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Abstract. Linear analytic solutions of the homogeneously broadened, unidirectional 
Maxwell-Bloch equations with field losses are found in circumstances where amplification 
can occur. Particular stress is laid upon the similarity-variable solution. A number of 
inequalitiesure derived which suffice to differentiate between the physical regimes of 
uperfluorescence, amplified spontaneous emission and swept-gain amplification. 

1. Introduction 

The emission of radiant energy from a system consisting of a large number of inverted 
atoms can take place in a variety of different ways. The precise mechanism of an 
emission process is determined largely by the relative magnitudes of the characteristic 
time constants of the system, these being associated with the interplay of the various 
gain and loss processes. A set of unidirectional (reduced) Maxwell-Bloch equations 
(MBE), which describes successfully the interaction of plane-wave, single-mode radia- 
tion with an array of two-level atoms, forms the common basis for the theoretical 
treatment of a large catalogue of nonlinear optical phenomena, some important 
examples of recent interest being superfluorescence (SF), amplified spontaneous emis- 
sion (ASE), steady-state processes in amplifiers including swept-gain amplification 
(SGA), and also stimulated Raman scattering, resonant multiphoton processes, solitary 
wave behaviour, and in absorbing media the hysteresis and bistability phenomena. 

In practice, a variety of amplifier problems are found to be characterised by field and 
atomic polarisation envelopes which depend upon a ‘similarity’ coordinate (a variable 
consisting of the product of a spatial and a temporal coordinate, suitably scaled). 
Following the work of Lamb (1971), it is clear that pi pulses should propagate in a 
lossless amplifier with ‘ringing’ field profiles, which are obtained as a similarity-variable 
solution of the equations of motion. Burnham and Chiao (1969) also found ringing- 
pulse solutions of this type in their analysis of induced, coherent resonance fluorescence 
from a thin slab of absorbing material. It would therefore seem profitable to investigate 
the similarity solution of the reduced MBE in as general a form as possible. The 
introduction of dissipation processes into the physics undoubtedly complicates the 
analysis, but is unavoidable if a realistic theoretical description is desired, and indeed is 
an essential ingredient in the dynamics of ASE and SGA. 

We focus our attention upon a linearised solution of the MBE, it being reasonable to 
expect that this may be utilised as a basis for attacking the much more difficult problem 
of the nonlinear regime. Fortunately the linear solution is of considerable interest in its 
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own right, and it should be mentioned that in SF the behaviour of the radiating system in 
the linear regime strongly affects the subsequent behaviour in the nonlinear regime. 
The shapes and delays of the pulses emitted in SF are strongly affected by the effective 
initial 'tipping angle' of the collective Bloch vector, which is a measure of the initiating 
effect of noise. Note also that, although the approach adopted here is semiclassical, 
with phenomenological treatment of the dissipative processes, the solutions to the 
equations of motion can be regarded as both prerequisites and guides for fully 
quantum-mechanical treatments. For this reason, and because semiclassical descrip- 
tions are often good approximations anyway, the present use of semiclassical formalism 
can be justified. Fully quantum-mechanical treatments of SF in the linear regime have 
recently been explored by Glauber and Haake (1978) and by Schuurmans and Polder 
(1979), and yield expressions for the fields and atomic polarisation envelopes which are 
similar to the semiclassical counterparts to be derived below. The latter quantities will 
be regarded as real, since only on-resonant and unchirped processes have been 
assumed. 

2. The equations of motion 

For the purposes of this investigation the equations of motion describing the interaction 
between a rod-shaped array of two-level atoms of length L and an electromagnetic field 
propagating along the axis of the rod are assumed to be 

a@ 1 a@ 
-+--++@=c-- 'pP 
ax c at 

T i l P  = EN 
at  

where @ ( x ,  t )  is the electric-field envelope, P(x ,  t )  is the envelope of the atomic 
polarisation density and N(x ,  t )  is the envelope of the population-inversion density (all 
slowly varying quantities), while TI  and T,  are longitudinal and transverse decay times, 
k is a constant linear field loss coefficient with the dimension of inverse length and 
p = 27rwop2p/h (wo is the on-resonance frequency, p is the dipole matrix element and p 
is the density of active atoms). For an amplifying medium the parameter p is taken by 
convention (Lamb 1971) to be positive and is related to the 'superradiance time' TR 
(Bullough et a1 1978) through 

/3 = 2Ti1TE1 (2) 

where TE = 2L/c is the 'round-trip' time. It is assumed that the medium is inverted by a 
swept 6-pulse excitation, and only emission of energy along the direction of pro- 
pagation of the excitation is considered. 

Before proceeding with the analysis, it is worth recording that a number of different 
scalings of the time and space variables, x and t, as well as of the field variable @(x, t ) ,  
have been reported in the literature dealing with SF and ASE. Some of the recent 
treatments of SF theory are both quantum-mechanical and bidirectional (i.e. include at 
least two coupled, counterpropagating fields); these important features do not affect the 
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types of scaling procedures, however, and will be omitted from the present discussion. 
The works of Bullough et a1 (Saunders and Bullough 1977, Bullough et a1 1978) and the 
present author (Hermann 1979a, b) employ TE as a scaling parameter, i.e. with 
E =:TEE, = y7’ = (kTE)-’T and X I  = x/L, t’ = ct/L we can re-express equations 
( la)-( lc)  in terms of the displaced-time frame 

in the slightly simpler form 

E+ kLE = aP 
a/A. 

aN -+ y l (N  + No) = -EP 
a7 

with a = kTE/TR = (kTE/TC)’; T, = p-’” is the Arecchi-Courtens (1970) ‘maximum 
cooperation time’, the ‘cooperation length’ being cTc. 

An alternative procedure, which has been adopted by Glauber and Haake (1978) 
and by Haake et a1 (1979), is to scale the time variable to TR. Thus, with T = t/TR, 
X = x’ = x/L, TI = Ti/TR and E =$TEE we have 

Schuurmans and Polder (1979) have scaled both time and field variables to T R ;  i.e. with 
E’= TRE, TI = T~/TR=YI-’, T ’=( t - x / c ) /T~=a( t ’ - x ’ ) ,  X ’ = x ’ w e  find that equa- 
tions (la)-(lc) transform to 

aE’ 
ax’ -+ kLE’=P 

The forms of the MBE given by sets ( 5 )  and (6)  are prr5clbly more convenient than the set 
(4)  for computational purposes, provided that superradiance occurs. In a more general 
analytical treatment, however, the set (4)  is preferable since it is possible to relate the 
mathematical expressions to the physics without transforming back to the original 
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variables. Consequently, we will use the set (4) as the basis for our analysis hereafter, 
and will reserve the use of the Greek letters T and p for time and space coordinates 
which have been scaled in a dimensionless form. 

3. The general linear solution 

The linearisation of the set of equations (4a)-(4c) within the context of an amplifying 
process corresponds with the assumption that N = 1 at all positions and times. If the 
dephasing (characteristic time y i l )  and the field losses (characteristic time c - 'k - l )  are 
the dominant dissipative processes, then equation (4c) may be ignored. It is then 
possible to separate equations (4a)  and (4b) into equations for P ( p ,  T )  and E ( p ,  T ) ,  and 
this may be accomplished in two ways. The first way is to apply formal integration 
procedures to equations (4a) and (4b), with N(w,  T )  = 1, from which it immediately 
follows that E ( p ,  r )  and P ( p ,  T )  are respective solutions of the pair of integral equations 

P ( p ,  7) = P ( p ,  0) e-'T + e-Kp I,'E(O, T I )  e'("-T) dT' 

where we have written K for kL. 
The second way of performing the separation is to differentiate equation (4a) with 

respect to T and equation (4b) with respect to p. After some rearrangement, a 
separation into apair of partial differential equations in E ( F ,  T )  and P ( p ,  7) is achieved: 

a2p aP aP 
a p a T  ap a7 
-+ y-+ K- = (CY - K ~ ) P  

a2E a~ aE 
spar ap a7 
- + ~ - + K - = ( c Y  - K ~ ) E .  

These differential equations may be solved in a straightforward manner by the 
method of Laplace transforms, No specific assumptions concerning the initial or 
boundary conditions need be made at this stage. In the space defined by the trans- 
formation 

RpL, P )  = W P ( P ,  7) )  (9) 

we find that equation (8a)  becomes 
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where P(p, 0) = K P ( ~ ,  r = 0 )  + P ( p ,  r = O)/apu. This equation may now be Laplace- 
inverted using the convolution theorem. After some manipulation we obtain the final 
result 

~ ( p ,  r )  = P(O, 0 )  e-(yT+KF) 10[2(w7)1/21 

+e-’‘ [ Ir. ~ ( p ’ ,  0 )  e-K(fi-F’)I o { 2 [ a ~ ( p  - ~ ‘ ” ‘ ’ ~ l  d p ’  
0 

where Io(@ is a modified Bessel function of order zero. Equation (86) can be solved 
similarly, and we find 

~ ( p ,  7) = E(O,  0 )  e-(YT+KF) Io[2(~Pr)1’21 

+a e-’’ low ~ ( p ’ ,  0 )  e-K(p-F’) I0{2[4@ - p ’ ) 1 1 / 2 1  dF’  

+ joT 8(0 ,  7’) e-Y(r-T’)Io{2[ap ( r  - T ’ ) ] ” ~ }  dT’ 

where ~ ( O , T ’ )  = yE(0 ,  T ’ )+~E(O,  T ’ ) / ~ T ’ .  Note that equations ( l l a )  and ( l l b )  are 
both symmetric with respect to p and 7, since E(0, r )  = yP(0 , r )  +dP(O, r ) / &  and 

Equations ( l l a )  and ( l l b )  are the general solutions of equations (4a) and (4b) in 
the linear regime, and do not appear to have been given in the literature in their present 
form previously. In the course of investigating a pulse propagation problem, Lax 
(1978) has given an analytic solution of a set of two coupled linear equations of first 
order and with arbitrary coefficients. Like equations ( l l a )  and ( l l b ) ,  the solutions for 
the two dependent variables are displayed in integral form; however, they contain both 
Io and Il  modified Bessel functions in the integrands. Straightforward integration by 
parts converts Lax’s solutions into the forms of ( l l a )  and ( l lb ) ,  which have more 
immediate application to the present amplifier problem. 

Although they appear complicated at first sight, it happens that the integrals can 
sometimes be evaluated in terms of functions whose properties are well understood and 
tabulated. In order to accomplish this, it will be helpful to establish two mathematical 
identities. The form for the similarity variable that is found to be most convenient is 

a%, 0)  = KE(F, 0 )  + aE(P, 0)/acL. 

e(p, T )  = (12) 
from which we immediately deduce the differential property 

The differential equation for a modified Bessel function of order zero, y =Io (e ) ,  is 
y”+ O-’y = y .  Using equation (13) we therefore deduce the identities 
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Considering the problem of the initiation of an emission process, it has been 
recognised (Schuurmans and Polder 1979) that a distinction may be drawn between 
theories which ascribe the initiation of SF to the uncertainty in the atomic polarisation at 
T = 0 (Haake et a1 1979, Glauber and Haake 1978) and theories which ascribe the 
initiation to zero-point fluctuations of the incident vacuum field at p = 0 (Polder et a1 
1979, Schuurmans et a1 1978). In common with Schuurmans and Polder (1979), we will 
allow for fluctuations of both field and matter (in the context of a semiclassical 
description) by introducing the initial and boundary conditions P ( p ,  T = 0 )  = f (p ) ,  
E(p = 0, T) = g ( T ) ,  which in the simplest model are taken to be constants, Po andEo say. 
More generally, conditions such as these can be implemented readily and controlled at a 
macroscopic level, so that in adopting them it should be understood that we are not 
confining the theory solely to a simulation of the initiating effects of quantum processes 
alone. Using constant values Po and Eo,  the equations (7a)  and (7b) may be solved, 
giving in particular 

P ( 0 , 7 )  = Po e-"' + yV1Eo( 1 - e-"') 
E(@, 0) =Eo eFKF + ((Y/K)Po(~ - e-KcL). 

For a situation in which cooperative processes are totally absent, we may put a = 0 in 
equations (1 1 a )  and (1 1 b),  so that a monochromatic EM field propagating in the axial 
direction will experience decay of its amplitude according to the time-independent law 

E ( p ,  7) = Eo e-KF, 

~ ( p ,  T) = p0 e-" + Y - ' E ~  ePKw(I -e-"'). 

(16a) 
while the atomic polarisation envelope will correspondingly decay according to 

(16b) 

More general expressions for E(@, T) and P ( p ,  T) when a > 0 are obtained when 
equations ( l l a )  and (116) are evaluated with the help of identities (14a) and (14b). 
Again we assume constant values, Po and Eo, for P ( p ,  0) and E(O,7). The exact 
evaluations of (1 1 a )  and (1 1 b) are 

~ ( p ,  7) = p0 lo (e)  +p0 er(a/K)-y'T (1 -J(w, 4 K ) )  

J ( u ,  U )  = 1 -e-' e-'lo(2&) dz I," 
and has arisen in numerous physical contexts. Its properties have been studied 
extensively by Goldstein (1953) and many of them are presented in a convenient form 
by Luke (1962). A number of useful asymptotic expansions are available. The 
elementary properties of immediate interest are 

J ( u ,  0) = e-u (19a) 
J ( 0 ,  U )  = 1 

J(c0, U )  = 0 
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It may be verified, on using identities (19a)-(19f), that the original differential 
equations (8a) and (8b)  are satisfied. 

4. Specific physical applications 

A number of conclusions concerning the types of physical behaviour represented by 
solutions of the MBE may be gleaned from the general linear solutions ( l l a )  and ( l l b ) ,  
as well as from the particular solutions (17a) and (17b). Firstly, one of the terms in the 
analytical expression for E ( P ,  7) is always proportional to a, so that in circumstances 
where this term is dominant we should expect superradiant behaviour (field intensities 
in superradiant processes are essentially proportional to the square of the number of 
active atoms, and a is proportional to this number). Furthermore, for large enough YT 
the linear solutions tend to values independent of 7, namely 

which are certainly not superradiant. We can therefore conclude that superradiance is 
destroyed when homogeneous broadening is 'large enough'. The steady-state quan- 
tities Pss(w) and Es, (p)  given by (20a) and (20b) are characteristic of ASE (Icsevgi and 
Lamb 1969, Hopf and Scully 1969, Crisp 1970, Allen and Peters 1973). Instead of the 
spatial distribution occurring when a P / h  = 0, let us now consider the temporal 
distribution which could conceivably occur when dE/ap = 0 in equations (4a) and (4b). 
Again keeping N ( F ,  7) equal to unity, we find that ( 4 a )  and (4b) are easily solved in this 
case, yielding 

These displaced-time-dependent quantities are recognised as describing the 
(linearised) phenomenon of SGA. The factor ( Y / K  in equation (21b) indicates that 
superradiant behaviour is retained. Note also that the functions P ( T )  and E(7) are 
independent of L ;  thus, on transforming the quantities in (21a) into the original 
unscaled quantities we obtain for the argument of the exponential 

( p c - l k - ' -  Ti')(t -x/c).  

This independence from L is in keeping with the conclusions of previous authors 
(Bonifacio et a1 1978) that there is no concept of cooperation length in SGA. It is also 
significant that the threshold condition for growth of the field and of the atomic 
polarisation in both ASE and SGA is a > KY.  In this connection it should be noted that 
recent work (Hermann 1979a,b) has shown that the condition a > KY is not sufficient to 
ensure that amplification will occur, and that a further constraint involving the 
amplitude and gain-to-loss ratio of the pumping pulse is also required. As the model we 
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employ utilises a S-pulse excitation interacting with an array of two-level atoms, it is 
unnecessary to investigate this further constraint here. 

So far, we have not considered the requirement of providing precisely defined 
conditions, or constraints, which suffice to differentiate between the different physical 
processes of SF, ASE and SGA. In order to do so, we turn again to equations (17a) and 
(176). A further property of the function J ( u ,  v )  is required, namely that for v > U there 
is a modified Bessel-function expansion (Luke 1962) 

Thus, providing that ap > y27 and also (YT> ~ ~ p ,  we may expand (17a) and (1'76) as 

-iyT'KF)(Po c (2Kp)"8-"1,(8) +EO ym-1(2T)m8-mIm(8)) ( 2 3 ~ )  
m m 

m=O m = l  
Pb ,  7) = e  

With y = K = 0, the right-hand side of equation. (23b) becomes 2apP08-111(8)+ 
EoIo(B) .  We may regard the terms inside the large round brackets in (23a) and (236) as 
'gain' functions, and the exponential functions as 'loss' functions. According to 
equation (22), we find that for ap >> y27 and CYT >> ~~p the expansions may be truncated 
at the first modified Bessel function in each case, so that the 'gain' functions become 
independent of the loss parameters K ,  y. Let us also assume that 8 >> 1; in the context of 
SF this implies that the delay time TD of the leading pulse (which may be regarded as an 
upper limit of the displaced time T = t - x / c  in the linear regime) is much larger than 
the superradiant time TR. Then the I m ( 8 )  may be replaced with their asymptotic 
limits for 8 +CO, i.e. exp(8 -3 l n ( 2 d ) )  -exp 8, and consequently E ( p ,  T) - 
(aPO+EO) exp[8 - (77 + ~ p ) ] .  The argument of the exponential function here is always 
positive, since we have assumed ap >> y27, >> ~ ~ p .  A further consequence of these 
two inequalities is that a >> ~ p .  We can conclude that superradiant emission in which 
the field always increases monotonically with 8 (i.e. SF in the linear regime) will occur 
when the inequalities 2apPo >>Eo, ap >> y27 and >> ~~p are satisfied. It is useful to 
express these inequalities in terms of easily observable quantities, and for this purpose 
we set p = 1, 7 = T~ = (iTE)-'TD and write Tk = c - l k - l ,  Tc=p-'l2= ( ~ T E T R ) " ~ .  The 
full set of constraints sufficient for SF is consequently found to be 

TD >> TR >> T, >> ;T, (24a) 

T2 >> ( TRTD)''2 (246) 
Tk >> iTE( TR/ TD)'12 

(YPO >>Eo. ( 2 4 4  

The time TD is the delay to be expected of the first pulse in superfluorescent emission, 
and is given to a first approximation (Hermann 1979a, b, Hermann and Bullough 1979) 
by TD = $TR{ln(4&/PO)}'. The inequality (246) has already been given by Schu- 
urmans and Polder (1979). Further constraints would be needed, of course, if addi- 
tional dissipative and line-broadening processes (e.g. T$ < 03) were incorporated in the 
equations of motion. 
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The constraints (24a) are necessary for SF, but are not generally required for 
amplification. For ASE it is easily established, from the properties of the functions 
J ( u ,  U), that sufficient conditions for obtaining the steady-state equations (20a) and 
(20b)  are the inequality (24c) and the inequality Tz<< (TRTD)’/*. Sufficient conditions 
for the onset of behaviour typical of SGA are likewise found to be (24b) together with 
the inequality Tk << $TE( TR/TD)’l2. Note that the latter condition implies that K >> 
(TD/TR)’/’. In all of the cases we have considered the inequality cy > KY holds, and is 
obviously to be regarded as the threshold condition for amplification generally. In 
terms of the unscaled parameters it becomes 

(TkTZ)’” > T,. (25) 

5. Conclusion 

In conclusion, it has been shown that an analytic solution of the semiclassical Maxwell- 
Bloch equations in an amplifying context is easily obtainable, in linear approximation, 
when field losses and atomic relaxation terms are included. The result should not be 
regarded as a trivial modification of the more restrictive calculations in which either one 
or both of these two types of dissipative processes are omitted: field losses are an 
essential ingredient in the physics of SGA, while atomic relaxation is essential for ASE. 
Hence, some understanding of the transitions from the regime of SF to the regimes of 
ASE or SGA can be obtained from the general analytic solution. Constraints sufficient 
for the purpose of defining the three regimes of SF, ASE and SGA have thus been 
obtained from the analytic solution. Note that Leonardi and Vaglica (1979) have 
recently performed a quantum-mechanical calculation of the process of SF emission 
incorporating inhomogeneous dephasing (characteristic time T? ). They have 
concluded that the constraint ( TRTD) < T;  must be imposed for inhomogeneous 
broadening to have a negligible effect upon SF, and consequently that inhomogeneous 
dephasing does not contribute significantly to the dynamics of the original SF experi- 
ments of Skribanowitz et a1 (1973). This partly justifies our neglect of inhomogeneous 
broadening. 

An extension of the present calculation to the nonlinear regime may be pursued 
along the lines indicated in the treatment of undamped SF by the present author 
(Hermann 1979a). The presence of damping terms, however, implies that a general 
nonlinear solution in terms of a single (similarity) variable is no longer possible. The 
details of this extension will be left to a future publication. 
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